$$1.3^{2x-1} = 5^{x+7}$$

 $log 3^{2x-1} = log 5^{x+7} - ta$ (2x - 1)log 3 = (x + 7)log 5 - b (2x)log 3 - log 3 = (x)log 5 + log 3 - d 2xlog 3 - xlog 5 = 7log 5 + log 3 - b x(2log 3 - log 5) = 7log 5 + log 3 - T $X = \frac{7 \log 5 + \log 3}{2 \log 3 - \log 5} - d$ X = 21.0337 - SO

take logs of both sides
bring the exponents out front
distribute the brackets
bring x's to one side
Take out common factor of x from LHS.
divide each side by the RHS
SOLVE with calculator

2.
$$2^{x-1} = 23 \bullet 6^{3x}$$

 $log 2^{x-1} = log 23 + log 6^{3x}$ (x - 1)log 2 = log 23 + 3xlog 6 rlog 2 - log 2 = log 23 + 3x log 6 -log 2 - log 23 = 3xlog 6 - xlog 2 -log 2 - log 23 = x(3log 6 - log 2) -log 2 - log 23 = x(3log 6 - log 2) -log 2 - log 23 = x(3log 6 - log 2) -log 2 - log 23 = x -solve for x

$$-.8176 = x$$

3. $\log_7 x = 3$

 $7^3 = x$ - because the x is easy to solve for, we don't need to do any tricks 343 = x

4. $\log_{x} 5 = 4$

 $x^4\!=\!5$ - because the x is easy to solve for, we don't need to do any tricks. $x=\sqrt[4]{5}$

5. $\log_3 8 = x$

$3^{x} = 8$	- write in exponential form
$\log 3^x = \log 8$	- Take logs of both sides
$x \log 3 = \log 8$	- take exponent out to the front.
$X = \frac{\log 8}{\log 3}$	- solve for x
X = 1.8928	- use calculator to get answer

6. $\log x + \log (x + 1) = \log 6$

log x(x + 1) = log 6 Log (x² + x) = log 6 x² + x = 6 x² + x - 6 = 0 (x + 3)(x - 2) x = -3, x = 2- squish the logs together.
- equal logs, equal numbers
- equal logs, equal number

7. $\log_3 x + 4 \log_3 x = \log_3 1024$

 $log_{3} x + log_{3} x^{4} = log_{3} 1024 - put 4 back as an exponent so we can squish.$ $log_{3} x(x^{4}) = log_{3} 1024 - squish the RHS together (log properties)$ $log_{3} x^{5} = log_{3} 1024 - equal logs, equal numbers$ $x^{5} = 1024 - solve for x (get rid of exponent 5)$ $x = \sqrt[5]{1024}$ $x = (1024)^{\frac{1}{5}}$ $x = 2^{\frac{10}{5}}$ $x = 2^{2}$ x = 4

$$\log_5(x^3 - 64) - \log_5(x^2 + 4x + 16) = \log_5 3$$

$\log_5 \frac{(x^3 - 64)}{(x^2 + 4x + 16)} = \log_5 3$	- squish together
$\frac{(x^3 - 64)}{(x^2 + 4x + 16)} = 3$	- equal logs, equal exponents
$\frac{(x-4)(x^2+4x+16)}{(x^2+4x+16)} = 3$	- Factor a difference of cubes (use the
(x-4) = 3	form (a-b)($a^2 + ab + b^2$) - top trinomial and bottom trinomial cancel out
x = 7	- solve for x

9. $\log(x^2 + 8x + 7) - \log(x + 7) = \log 2$

$$\log (x + 7)(x + 1) - \log (x + 7) = \log 2$$

$$\log \frac{(x + 7)(x + 1)}{(x + 7)} = \log 2$$

$$\log (x + 1) = \log 2$$

$$x + 1 = 2$$

$$x = 1$$

- factor the trinomial -squish using log properties (cancel) - equal logs, equal numbers - solve for **x**

10. $\log_3 x + \log_3 7 = 4$

 $\log_{3} 7x = 4$ -squish using log properties and put into exponential form. $3^4 = 7x$ 81 = 7x- solve for x 11.7714 = x

11.
$$\log_2(x-1) + \log_2(x+2) = 3$$

 $\log_{2}(x-1)(x+2) = 3$ - Use log properties to squish LHS $\log_{2}(x^{2} - x + 2x - 2) = 3$ - use foil to expand the binomials $\log_2(x^2 + x - 2) = 3$ - combine like terms $2^3 = x^2 + x - 2$ $8 = x^2 + x - 2$ $0 = x^2 + x - 10$ $1 \pm \sqrt{1 - 4(1)(-10)}$ 2(1)

3.7016 or -2.7016 reject (-) answer

- combine like terms on one side

- can not factor regular way so must use

quadratic formula

12. $4 \log_4 x - 2 \log_4 x = \log_4 28 - \log_4 7$

$\log_4 x^4 - \log_4 x^2 = \log_4 28 - \log_4 7$	-use log properties to bring back
	exponents
$\log_4 \frac{x^4}{x^2} = \log_4 \frac{28}{7}$	-use log properties to squish together
$\log_4 x^2 = \log_4 4$	-reduce
$x^2 = 4$	-equal logs, equal numbers
$x = \pm 2$	do not reject negative

13. $\log_3 x + \log_2 5 = \log_7 12$

 $\frac{\log x}{\log 3} + \frac{\log 5}{\log 2} = \frac{\log 12}{\log 7}$ - use log properties to get all the same base $\frac{\log x}{\log 3} + 2.3219 = 1.2770$ - find the values for the logs without x's $\frac{\log x}{\log 3} = -1.0449$ -multiply both sides by log 3 $\log x = -.4985$ $10^{-.4985} = x$ - rewrite in exponential form or take antilog x = .3173

14. $\log_3 x + \log_4 6 = \log_2 x - \log_5 3$

 $\frac{\log x}{\log 3} + \frac{\log 6}{\log 4} = \frac{\log x}{\log 2} - \frac{\log 3}{\log 5}$ -use log properties to get the same base. $\frac{\log x}{\log 3} + 1.2925 = \frac{\log x}{\log 2} - .6826$ - find the values for the logs without x's $(\log 2)(\log x) + (\log 2)(\log 3)(1.2925) = (\log 3)(\log x) - (\log 2)(\log 3)(.6826)$ multiply both sides by (log 2)(log 3) in order to get rid of the denominators $(\log 2)(\log x) + .1856 = (\log 3)(\log x) - .0980$ - find the values of the logs $(.3010)\log x + .1856 = (.4771)\log x - .0980$ - give the x's their own side $(.3010 \log x - .4771 \log x) = -.0980 - .1856$ - take out a common factor of log x on the LHS $\log x (.3010 - .4771) = -.2836$ $\log x (-.1761) = -.2836$ - divide both sides by -.1761 $\log x = 1.6104$ - take the antilog or rewrite in exponential form. $10^{1.6104} = x$ 40.8302 = x