BUILDING QUADRATIC FUNCTIONS

1. Given the coordinates of the vertex and the value of " c ".
a) graph opens up, vertex $(3,2), \mathrm{c}=4 \quad 4(4)(y-2)=(x-3)^{2}$
b) graph opens down, vertex $(-5,-3), \mathrm{c}=1 / 4-4(1 / 4)(y+3)=(x+5)^{2}$
c) graph opens to the right, vertex $(-2,7), \mathrm{c}=3 / 4 \quad 4(3 / 4)(x+2)=(y-7)^{2}$
d) graph opens to the left, vertex $(4,-3), \mathrm{c}=6-4(6)(x-4)=(y+3)^{2}$
2. Given the coordinates of the vertex and of the focal point.
a) vertex $(3,5)$, focal point $(5,5) \quad c=2$, opens right, $4(2)(x-3)=(y-5)^{2}$
b) vertex $(-3,7)$, focal point $(-11,7) c=8$, opens left, $-4(8)(x+3)=(y-7)^{2}$
c) vertex $(4,-6)$, focal point $(4,-11) c=5$, opens down, $-4(5)(y+6)=(x-4)^{2}$
d) vertex $(-3,-4)$, focal point $(-3,0) c=4$, opens up, $4(4)(y+4)=(x+3)^{2}$
3. Given the coordinates of the vertex and the equation of the directrix
a) vertex $(2,3), \mathrm{x}=6 \quad c=3$, opens left, $-4(3)(x-2)=(y-3)^{2}$
b) vertex $(-4,5), \mathrm{x}=-5 \quad c=1$, opens right, $4(1)(x+4)=(y-5)^{2}$
c) vertex $(6,8), \mathrm{y}=12 \mathrm{c}=4$, opens down, $-4(4)(y-8)=(x-6)^{2}$
d) vertex $(-5,-2), \mathrm{y}=-6 \quad c=4$, opens up, $4(4)(y+2)=(x+5)^{2}$
4. Given the coordinates of the focal point and the equation of the directrix.
a) focal point $(4,6), \mathrm{x}=8 \quad c=2$, opens left, vertex $(6,6),-4(3)(x+6)=(y+6)^{2}$
b) focal point $(-3,6), \mathrm{x}=-5 \quad c=1$, opens right, vertex $(-4,6), 4(1)(x+4)=(y-6)^{2}$
c) focal point $(6,-9), \mathrm{y}=-5 \quad c=2$, opens down, vertex $(6,-7),-4(2)(y+7)=(x-6)^{2}$
d) focal point $(-2,-4), \mathrm{y}=-8 \quad c=2$, opens up, vertex $(-2,-6), 4(2)(y+6)=(x+2)^{2}$
5. Given the endpoints of the latus rectum
a) $(-3,7)$ and $(-3,9)$, opening left $c=2$, vertex $(-3,-1),-4(2)(x+1)=(y+3)^{2}$
b) $(-6,2)$ and $(14,2)$, opening down $c=5$, vertex $(4,2),-4(5)(y-2)=(x-4)^{2}$
6. Given a point on the curve and the vertex
a) point $(6,7)$ and vertex $(14,-5)$, opening left

$$
-4(c)(6-14)=(7-(-5))^{2}, c=144 / 32=9 / 2,-4(9 / 2)(x-14)=(y+5)^{2}
$$

b) point $(-6,-5)$ and vertex $(6,4)$, opening down

$$
-4(c)(-5-4)=(-6-6)^{2}, c=4,-4(4)(y-4)=(x-6)^{2}
$$

