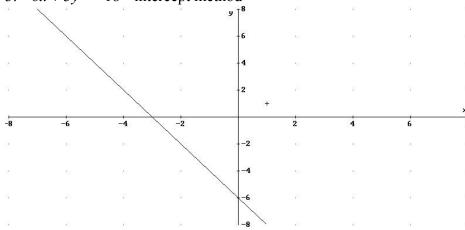

Linear Functions

A. Graph the following equations using the indicated method:


1. 5x - 3y = 12 - Table of values

2. -2x + 3y = 7 - slope intercept

3. 6x + 3y = -18 - intercept method

- B. For each pair of points determine:
 - a) slope of the line joining the two points
 - b) midpoint of the line segment joining the two points
 - c) distance between the two points
 - d) the slope of the line parallel to the line defined by the two points
 - e) the slope of the line perpendicular to the line defined by the two points
 - 1. (-4,5) and (-7,-9)

a)
$$m = \frac{14}{3}$$
, b) $M\left(-\frac{11}{2}, -\frac{4}{2}\right)$, c) $d = \sqrt{205}$, d) $m_2 = \frac{14}{3}$, e) $m_2 = -\frac{3}{14}$

2. (-9,-3) and (11,-6)

a)
$$m = -\frac{3}{20}$$
, b) $M\left(\frac{2}{2}, -\frac{9}{2}\right)$, c) $d = \sqrt{409}$, d) $m_2 = -\frac{3}{20}$, e) $m_2 = \frac{20}{3}$

3. (-14,11) and (-17,-7)

a)
$$m = \frac{18}{3}$$
, b) $M\left(-\frac{31}{2}, \frac{4}{2}\right)$, c) $d = \sqrt{333}$, d) $m_2 = \frac{18}{3}$, e) $m_2 = -\frac{3}{18}$

- C. From each given equation determine:
 - a) the slope of the line
 - b) the slope of the line parallel to the given line
 - c) the slope of the line perpendicular to the given line
 - d) the y-intercept of the equation
 - e) the x-intercept of the equation

a)
$$m = \frac{9}{3}$$
, b) $m_2 = \frac{9}{3}$, c) $m_2 = -\frac{3}{9}$, d) $b = \frac{11}{3}$, e) $x = -\frac{11}{9}$

2. 7v + 4x = 17

a)
$$m = -\frac{4}{7}$$
, b) $m_2 = -\frac{4}{7}$, c) $m_2 = \frac{7}{4}$, d) $b = \frac{17}{7}$, e) $x = \frac{17}{4}$

3. 4v = -13

a)
$$m = 0$$
, b) $m_2 = 0$, c) $m_2 = \emptyset$, d) $b = -\frac{13}{4}$, e) $x = \emptyset$

4. -3x = 4

a)
$$m = \emptyset$$
, b) $m_2 = \emptyset$, c) $m_2 = 0$, d) $b = \emptyset$, e) $x = -\frac{4}{3}$

- D. Determine the equation of the line given the following information:
 - a) slope and y-intercept

1.
$$m = -2, b = -5$$

2.
$$m = -3/4, b = 1/4$$

3.
$$m = 5, (0, -2)$$

$$y = -2x - 5$$

1.
$$m = -2, b = -5$$

2. $m = -3/4, b = 1/4$
 $y = -2x - 5$
 $y = \frac{-3}{4}x + \frac{1}{4} \Rightarrow 4y = -3x + 1$

$$y = 5x - 2$$

4.
$$m = -3/5, b = 2/3$$
 $y = -\frac{3}{5}x + \frac{2}{3} \Rightarrow 15y = -9x + 10$

1.
$$m = -3,(5,-2)$$

2.
$$m = 5, (-3, -7)$$

3.
$$m = 3/4, (-5, -1)$$

$$y = -3x + 13$$
$$y = 5x + 8$$
$$4y = 3x + 11$$

$$v = 5x + 8$$

$$\frac{1}{4v - 3v + 11}$$

1.
$$(-6,7)$$
 and $(5,-2)$

1.
$$(-6,7)$$
 and $(5,-2)$ $m = -\frac{9}{11}$, $11y = -9x + 23$

2.
$$(-8,-2)$$
 and $(4,-7)$

2.
$$(-8,-2)$$
 and $(4,-7)$ $m = -\frac{5}{12}$, $12y = -5x - 64$

d) point and an equation

1. through
$$(4,-2)$$
 and parallel to $6x - 5y = 11$

$$m = \frac{6}{5}, 5y = 6x - 34$$

$$m = -\frac{3}{7}, 7y = -3x - 49$$

2. through
$$(-7,-4)$$
 and parallel to $3x + 7y = -2$

3. through (6,-3) and perpendicular to
$$-4x + 3y = 6$$

$$m_1 = \frac{4}{3}$$
, $m_2 = -\frac{3}{4}$, $4y = -3x + 6$

4. through (-2,3) and perpendicular to
$$5x + 8y = -1$$

$$m_1 = -\frac{5}{8}, \quad m_2 = \frac{8}{5}, \quad 5y = 8x + 31$$

e) point and two points not on the given line

1. through
$$(-1,-3)$$
 and parallel to the line defined by the points $(-6,4)$ and $(-8,-1)$

$$m = \frac{5}{2}, \quad 2y = 5x - 1$$

2. through
$$(5,-5)$$
 and parallel to the line defined by the points $(-3,-2)$ and $(-7,-9)$

$$m = \frac{7}{4}, \quad 4y = 7x - 55$$

3. through
$$(5,-6)$$
 and perpendicular to the line defined by the points $(-1,7)$ and $(3,-1)$

$$m_1 = -2$$
, $m_2 = \frac{1}{2}$, $2y = x - 17$

5. 4. through
$$(-9,2)$$
 and perpendicular to the line defined by the points $(5,-7)$ and $(-4,-5)$

$$m_1 = -\frac{2}{9}, \quad m_2 = \frac{9}{2}, \quad 2y = 9x + 85$$

perpendicular bisector

1. of the line segment defined by the points
$$(-7,3)$$
 and $(3,-5)$

$$m_1 = -\frac{4}{5}$$
, $m_2 = \frac{5}{4}$, $M(-2, -1)$, $4y = 5x + 6$

2. of the line segment defined by the points (6,-4) and (11,-7)

$$m_1 = -\frac{3}{5}$$
, $m_2 = \frac{5}{3}$, $M\left(\frac{17}{2}, -\frac{11}{2}\right)$, $6y = 10x - 118$

g) special lines

1. through the point (-3,9) and parallel to the y-axis

y = -7

2. through the point (8,-7) and parallel to the x-axis

y = -11

3. through the point (-5,-11) and perpendicular to the y-axis

4. through the point (3,9) and perpendicular to the x-axis

x = 3