Linear Functions

1. Graph each of the following using the indicated method (using table of values, slope intercept form, or x and y intercept form)
a) $5 x-3 y=15$ - table of values

b) $-4 x+3 y=12$ - slope-intercept

c) $3 x-4 y=24-\mathrm{x}$ and y intercepts

2. Given $-7 x+2 y=11$ determine:
$\begin{array}{ll}\text { a) Slope } & m=\frac{7}{2} \\ \text { b) } y \text {-intercept } & b=\frac{11}{2} \\ \text { c) } x \text {-intercept } & x=-\frac{11}{7}\end{array}$
3. Given the points $(-5,3)$ and $(7,-6)$ determine:
a) slope of the line segment
b) midpoint of the line segment
c) distance between the two points
d) the slope of a line parallel to the given line segment

$$
\begin{aligned}
& m=-\frac{9}{12}=-\frac{3}{4} \\
& M\left(\frac{2}{2},-\frac{3}{2}\right)=\left(1,-\frac{3}{2}\right) \\
& d=\sqrt{225}=15 \\
& m=-\frac{3}{4} \\
& m=\frac{4}{3}
\end{aligned}
$$

4. Determine the equation given:
a) $m=-2 / 7$ and $b=-4 \quad 7 y=-2 x-28$
b) $m=-3 / 5$ and $(0,5)$
$5 y=-3 x+25$
c) $m=4 / 9$ and $(-1,5)$
$9 y=4 x+49$
d) $(4,-7)$ and $(-3,9)$
$7 y=-16 x+15$
e) through $(-3,7)$ and parallel to the equation $5 x-3 y=7 \quad m=\frac{5}{3}, 3 y=5 x+36$
f) through $(6,-5)$ and perpendicular to the line segment defined by the points $(-1,5)$ and $(-5,8) \quad m_{1}=-\frac{3}{4}, m_{2}=\frac{4}{3}, 3 y=4 x-39$
g) perpendicular bisector of the line segment defined by the points $(-7,12)$ and $(5,-4)$

$$
m_{1}=-\frac{16}{12}=-\frac{4}{3}, m_{2}=\frac{3}{4}, M(-1,4), 4 y=3 x=19
$$

h) through $(-6,2)$ and parallel to x-axis

$$
y=2
$$

i) through $(-2,9)$ and perpendicular to x -axis $\quad x=-2$

