Calculus Review

A. Functions:

1. Identify the domain and range for the following:
a) $f(x)=\sqrt{3-x^{2}}$
b) $f(x)=\frac{3}{x^{2}-7 x-8}$
2. Determine the equation given:
a) $D=(-\infty,-5) \cup(5, \infty), \quad R=[0, \infty)$
b) $D=(-\infty,-3) \cup(-3,2) \cup(2, \infty), \quad R=(-\infty, 0) \cup(0, \infty)$
3. Determine the slope of the tangent line to the curve $y=x^{2}-3 x$. The slope formula must be developed using the slope formula and not differentiation.
4. Given: $f(x)=x^{2}-5$ and $g(x)=x+1$, determine:
a) $f(-4)$
b) $g(7)$
c) $2 f(x)-3 g(x)$
d) $(f \circ g) x$
5. Transformations:

Given:

Determine a) $-f(x)$, b) $f(x)+1$, c) $f(x-1)$
B. Limits
a) General

1. $\lim _{x \rightarrow 4} \sqrt{x+\sqrt{x}}$
2. $\lim _{x \rightarrow-1} \frac{x+1}{x-x}$
3. $\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}}}{x}$
4. $\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x^{2}+3 x+2}$
5. $\lim _{x \rightarrow 0^{-}} \sqrt{-x}$
6. $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x^{4}-16}$
7. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-x-1}{4 x^{2}+7}$
8. $\lim _{x \rightarrow \infty} \frac{5 x^{3}-7 x^{2}}{4 x^{2}+9 x-5}$
9. $\lim _{x \rightarrow-3^{-}} \frac{4 x+1}{x+3}$
10. $\lim _{x \rightarrow 0} \frac{\sin 5 x}{3 x}$
11. $\lim _{x \rightarrow 0} \frac{\sec x}{1-\sin x}$
12. $\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{x^{2}}$
b) Determine whether each of the following is continuous or discontinuous. If

Discontinuous, determine whether a removable discontinuity exists and what it is.
a) $f(x)=-3 x^{3}+6 x-7$
b) $f(x)=\frac{4}{9-x^{2}}$
d) $f(x)=\frac{x^{2}-25}{x-5}$

C. Differentiation

a) General

1. $f(x)=x^{3}+5 x+4$
2. $f(x)=\frac{4-x}{3+x}$
3. $f(x)=\sqrt{3-5 x}$
4. $f(x)=x \sin x$
5. $f(x)=\frac{x}{\sqrt{9-4 x}}$
6. $f(x)=\sin (\cos x)$
7. $f(x)=\sin x \cos x$
8. $f(x)=\left(x^{2}-3\right)^{4}(3 x-7)^{5}$
9. $f(x)=e^{7 x-5}$
10. $f(x)=\ln \left(x^{2}-5\right) \cdot 7^{8 x-1}$
11. $f(x)=\frac{\log _{3}\left(x^{2}-5 x+1\right)}{e^{3 x+1}}$
12. $f(x)=\frac{1}{\sin (x-\sin x)}$
13. $f(x)=5 x^{3}-2 x^{2}+5 x-3$
14. $f(x)=\left(\ln \left(3 x^{2}-5\right)\right)^{3}$
15. $f(x)=7^{5 x^{3}-3 x+6}$
16. $f(x)=\log _{9}\left(6 x^{5}-7 x\right)$
17. $f(x)=e^{5 x-7}$
18. $f(x)=\left(\cos \left(6 x^{3}-2 x+1\right)\right)^{3}$
b) Higher Order
19. $f(x)=4 x^{3}-3 x^{2}-18 x+5-3^{\text {rd }}$ order derivative
20. $f(x)=\sin ^{2} x \cos x-2^{\text {nd }}$ order derivative
21. If $f(x)=\left(2-x^{2}\right)^{6}$, find $\mathrm{f}(0), \mathrm{f}^{\prime}(0), \mathrm{f}^{\prime}(0)$
c) Implicit Differentiation
22. $x^{2} y+x y^{3}=2$
23. $\ln \left(x^{2}+1\right)+8 x y-e^{2 y}=0$
24. $\sqrt[3]{x}-\sqrt{y}=2$
D. Integration
a) Definite Integral
25. $\int_{-3}^{0}\left(2 x^{3}-3 x-4\right) d x$
26. $\int_{0}^{1}(5 \cos x+4 x) d x$
27. $\int_{1}^{\sqrt{3}} \frac{6}{1+x^{2}} d x$
b) General
28. $\int 5 d x$
29. $\int(3 x-7) d x$
30. $\int \sqrt{x} d x$
31. $\int \sqrt{x}-\frac{2}{\sqrt{x}} d x$
32. $\int\left(x+\frac{1}{x}\right)^{2} d x$
33. $\int \frac{1}{x^{2}+36} d x$
34. $\int \frac{x+3}{\left(x^{2}+6 x\right)^{2}} d x$
35. $\int \ln \left(5 x^{2}-3\right) x d x$
36. $\int 7^{x^{2}-7} 2 x d x$
37. $\int e^{x} \sin \left(e^{x}\right) d x$
38. $\int \frac{\sin x}{1+\cos ^{2} x} d x$
39. $\int \frac{1}{x \sqrt{\ln x}} d x$
40. $\int x^{2} \sin 2 x d x$
41. $\int \cos x \ln (\sin x) d x$
42. $\int \frac{3 x^{2}-6 x+2}{2 x^{3}-3 x^{2}+x} d x$
E. Curve Sketching:
43. $f(x)=x^{4}-6 x^{2}$
44. $f(x)=\frac{1}{x^{2}(x+3)}$

F. Problem Solving (Related Rates)

1. For $s(t)=t^{3}-3 t^{2}+5$ determine a) velocity at $\mathrm{t}=2, \mathrm{~b}$) acceleration at $\mathrm{t}=2$, c) maximum height reached, d) time it takes to reach the ground, e) total distance traveled.
2. Find the equation of a line tangent to the curve $f(x)=2 x^{3}-4 x+1$ at the point having an x -coordinate of -2 .
3. What is the slope of the line tangent to the curve $x^{3}+2 x^{2} y+y=5$ at the point $(-1,2)$
4. A spherical balloon is being inflated at a rate of 10 cubic meters per minute. Find the rate at which the radius is increasing a) when the radius is $5 \mathrm{~m}, \mathrm{~b}$) when the volume is 36 meters cubed.
5. A ladder 8 m long is leaning against a wall. The bottom of the ladder is sliding away from the wall at $1.5 \mathrm{~m} / \mathrm{s}$. At what rate is thee top of the ladder sliding down the wall at the instant when the bottom of the ladder is 5 meters from the wall?
6. Crushed gravel is being unloaded from a conveyor belt and as it is being poured the gravel forms a conical pile whose base radius is increasing as its height is increasing. If the base radius is increasing at $0.2 \mathrm{~m} / \mathrm{min}$ and the height is increasing at $0.3 \mathrm{~m} / \mathrm{min}$, find the rate at which the volume is increasing?
7. Water is being poured into a conical tank at a rate of 30 cubic meters per minute. If the height and radius at the top of the tank are 12 m and 8 meters respectively, find the rate at which the water level is rising at the instant when the height is 4 m .
8. Two ships leave port at the same time. Ship a travels west at 20 km , while ship B heads south at 35 km . At what rate are the ships separating after one hour?

G. Optimization:

1. A piece of wire 8 cm long is cut into two pieces. One piece is bent to form a circle and the other is bent to form a square. How should the wire be cut if the total enclosed area is to be as large as possible?
2. A rectangular field along a straight river is to be divided into 3 smaller fields by one fence parallel to the river and 4 fences perpendicular to the river. Find the maximum area that can be enclose dif 1600 m of fencing is available
3. A box with an open top is to be made from a square piece of cardboard, of side length 100 cm , by cutting a square from each corner and then folding up the sides. Find the dimensions of the box of largest volume.
4. If the sum of two non-negative numbers is 20 , how should the numbers be chosen so that the sum of their squares is a maximum?
5. Find the point on the curve defined by $x^{2}-y^{2}=16$ that is closest to the point $(0,2)$.
6. A can is to be made to hold 3 liters of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.
H. Area under a curve.
7. Find the area enclosed by the parabola $y=2-x^{2}$ and the line $y=-x$.
8. Find the area enclosed by the parabola $y^{2}=4 x$ and the line $y=2 x-4$.
9. Find the volume of a solid obtained by rotating the region bounded by $y=\sqrt[3]{x}, y=8$ and $\mathrm{x}=0$ around the y -axis.
