Calculus Review

- A. Functions:
- 1. Identify the domain and range for the following:

a)
$$f(x) = \sqrt{3 - x^2}$$
 b) $f(x) = \frac{3}{x^2 - 7x - 8}$

- 2. Determine the equation given:
 - a) $D = (-\infty, -5) \cup (5, \infty), R = [0, \infty)$ b) $D = (-\infty, -3) \cup (-3, 2) \cup (2, \infty), R = (-\infty, 0) \cup (0, \infty)$
- 3. Determine the slope of the tangent line to the curve $y = x^2 3x$. The slope formula must be developed using the slope formula and not differentiation.
- 4. Given: $f(x) = x^2 5$ and g(x) = x + 1, determine:

a) f(-4) b) g(7) c) 2f(x) - 3g(x) d) $(f \circ g)x$

5. Transformations:

- B. Limits
- a) General

1.
$$\lim_{x \to 4} \sqrt{x + \sqrt{x}}$$
2.
$$\lim_{x \to -1} \frac{x + 1}{x - x}$$
3.
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x}$$
4.
$$\lim_{x \to -1} \frac{x^2 - x - 2}{x^2 + 3x + 2}$$
5.
$$\lim_{x \to 0^-} \sqrt{-x}$$
6.
$$\lim_{x \to 2} \frac{x^2 + 2x - 8}{x^4 - 16}$$
7.
$$\lim_{x \to \infty} \frac{2x^2 - x - 1}{4x^2 + 7}$$
8.
$$\lim_{x \to \infty} \frac{5x^3 - 7x^2}{4x^2 + 9x - 5}$$
9.
$$\lim_{x \to 3^-} \frac{4x + 1}{x + 3}$$
10.
$$\lim_{x \to 0} \frac{\sin 5x}{3x}$$
11.
$$\lim_{x \to 0} \frac{\sec x}{1 - \sin x}$$
12.
$$\lim_{x \to 0} \frac{\sin^2 3x}{x^2}$$

b) Determine whether each of the following is continuous or discontinuous. If Discontinuous, determine whether a removable discontinuity exists and what it is.

a)
$$f(x) = -3x^3 + 6x - 7$$
 b) $f(x) = \frac{4}{9 - x^2}$ d) $f(x) = \frac{x^2 - 25}{x - 5}$

- C. Differentiation
- a) General

1.
$$f(x) = x^3 + 5x + 4$$
2. $f(x) = \frac{4-x}{3+x}$ 3. $f(x) = \sqrt{3-5x}$ 4. $f(x) = x \sin x$ 5. $f(x) = \frac{x}{\sqrt{9-4x}}$ 6. $f(x) = \sin(\cos x)$ 7. $f(x) = \sin x \cos x$ 8. $f(x) = (x^2 - 3)^4 (3x - 7)^5$ 9. $f(x) = e^{7x-5}$ 10. $f(x) = \ln(x^2 - 5) \cdot 7^{8x-1}$ 11. $f(x) = \frac{\log_3(x^2 - 5x + 1)}{e^{3x+1}}$ 12. $f(x) = \frac{1}{\sin(x - \sin x)}$ 13. $f(x) = 5x^3 - 2x^2 + 5x - 3$ 14. $f(x) = (\ln(3x^2 - 5))^3$ 15. $f(x) = 7^{5x^3 - 3x + 6}$ 16. $f(x) = \log_9(6x^5 - 7x)$ 17. $f(x) = e^{5x-7}$ 18. $f(x) = (\cos(6x^3 - 2x + 1))^3$

b) Higher Order

1. $f(x) = 4x^3 - 3x^2 - 18x + 5 - 3^{rd}$ order derivative 2. $f(x) = \sin^2 x \cos x - 2^{rd}$ order derivative 3. If $f(x) = (2 - x^2)^6$, find f(0), f'(0), f''(0)

c) Implicit Differentiation

1.
$$x^2y + xy^3 = 2$$

2. $\ln(x^2 + 1) + 8xy - e^{2y} = 0$
3. $\sqrt[3]{x} - \sqrt{y} = 2$

D. Integration

a) Definite Integral

1.
$$\int_{-3}^{0} (2x^3 - 3x - 4)dx$$
 2. $\int_{0}^{1} (5\cos x + 4x)dx$ 3. $\int_{1}^{\sqrt{3}} \frac{6}{1 + x^2} dx$

b) General

1.
$$\int 5dx$$

2.
$$\int (3x-7)dx$$

3.
$$\int \sqrt{x}dx$$

4.
$$\int \sqrt{x} - \frac{2}{\sqrt{x}}dx$$

5.
$$\int \left(x + \frac{1}{x}\right)^2 dx$$

6.
$$\int \frac{1}{x^2 + 36}dx$$

7.
$$\int \frac{x+3}{(x^2+6x)^2} dx$$

10.
$$\int e^x \sin(e^x) dx$$

11.
$$\int \frac{\sin x}{1+\cos^2 x} dx$$

12.
$$\int \frac{1}{x\sqrt{\ln x}} dx$$

13.
$$\int x^2 \sin 2x dx$$

14.
$$\int \cos x \ln(\sin x) dx$$

15.
$$\int \frac{3x^2-6x+2}{2x^3-3x^2+x} dx$$

E. Curve Sketching:

1.
$$f(x) = x^4 - 6x^2$$

2. $f(x) = \frac{1}{x^2(x+3)}$

- F. Problem Solving (Related Rates)
- 1. For $s(t) = t^3 3t^2 + 5$ determine a) velocity at t = 2, b) acceleration at t = 2, c) maximum height reached, d) time it takes to reach the ground, e) total distance traveled.
- 2. Find the equation of a line tangent to the curve $f(x) = 2x^3 4x + 1$ at the point having an x-coordinate of -2.
- 3. What is the slope of the line tangent to the curve $x^3 + 2x^2y + y = 5$ at the point (-1, 2)
- 4. A spherical balloon is being inflated at a rate of 10 cubic meters per minute. Find the rate at which the radius is increasing a) when the radius is 5m, b) when the volume is 36 meters cubed.
- 5. A ladder 8m long is leaning against a wall. The bottom of the ladder is sliding away from the wall at 1.5 m/s. At what rate is thee top of the ladder sliding down the wall at the instant when the bottom of the ladder is 5 meters from the wall?
- 6. Crushed gravel is being unloaded from a conveyor belt and as it is being poured the gravel forms a conical pile whose base radius is increasing as its height is increasing. If the base radius is increasing at 0.2 m/min and the height is increasing at 0.3 m/min, find the rate at which the volume is increasing?
- 7. Water is being poured into a conical tank at a rate of 30 cubic meters per minute. If the height and radius at the top of the tank are 12m and 8 meters respectively, find the rate at which the water level is rising at the instant when the height is 4m.
- 8. Two ships leave port at the same time. Ship a travels west at 20km, while ship B heads south at 35 km. At what rate are the ships separating after one hour?

G. Optimization:

- 1. A piece of wire 8cm long is cut into two pieces. One piece is bent to form a circle and the other is bent to form a square. How should the wire be cut if the total enclosed area is to be as large as possible?
- 2. A rectangular field along a straight river is to be divided into 3 smaller fields by one fence parallel to the river and 4 fences perpendicular to the river. Find the maximum area that can be enclose dif 1600m of fencing is available

- 3. A box with an open top is to be made from a square piece of cardboard, of side length 100cm, by cutting a square from each corner and then folding up the sides. Find the dimensions of the box of largest volume.
- 4. If the sum of two non-negative numbers is 20, how should the numbers be chosen so that the sum of their squares is a maximum?
- 5. Find the point on the curve defined by $x^2 y^2 = 16$ that is closest to the point (0, 2).
- 6. A can is to be made to hold 3 liters of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.

H. Area under a curve.

- 1. Find the area enclosed by the parabola $y = 2 x^2$ and the line y = -x.
- 2. Find the area enclosed by the parabola $y^2 = 4x$ and the line y = 2x 4.
- 3. Find the volume of a solid obtained by rotating the region bounded by $y = \sqrt[3]{x}$, y = 8 and x = 0 around the y-axis.