Partial Fractions

Points to note:

1. If denominator had linear factors of the from $x,(x+1),(2 x-3)$ the starting rational expression would be $\frac{A}{x}+\frac{B}{(x+1)}+\frac{C}{(2 x-3)}$.
2. If the denominator had repeating linear factors of the form $x^{3},(2 x-1)^{2}$ the starting rational expression would be $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{(2 x-1)}+\frac{E}{(2 x-1)^{2}}$
3. If the denominator had quadratic factors of the form $\left(x^{2}+2\right),\left(x^{2}+x-1\right)$ the starting rational expression would be $\frac{A x+B}{\left(x^{2}+2\right)}+\frac{C x+D}{\left(x^{2}+x-1\right)}$
4. If the denominator had quadratic factors of the form $\left(x^{2}+1\right)^{2}\left(2 x^{2}+5 x+1\right)^{2}$ the starting rational expression would be $\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C x+D}{\left(x^{2}+1\right)^{2}}+\frac{E x+F}{\left(2 x^{2}+5 x+1\right)}+\frac{G x+H}{\left(2 x^{2}+5 x+1\right)^{2}}$
5. If the denominator had a mixture of linear and quadratic some single and some repeating $x^{3},(3 x+1),\left(2 x^{2}+1\right)^{2},\left(5 x^{2}+x+1\right)$ the starting rational expression would be $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{(3 x+1)}+\frac{E x+F}{\left(2 x^{2}+1\right)}+\frac{G x+H}{\left(2 x^{2}+1\right)^{2}}+\frac{I x+J}{\left(5 x^{2}+x+1\right)}$

Assignment:

1. $\int \frac{x+2}{x^{2}-2 x+1} d x$
2. $\int \frac{1}{x^{3}+x} d x$
3. $\int \frac{x}{(x-4)^{2}} d x$
4. $\int \frac{x^{2}+3 x-2}{x^{3}+5 x} d x$
5. $\int \frac{x^{3}}{\left(x^{2}+2\right)^{2}} d x$
6. $\int \frac{x^{2}+6 x+4}{x^{4}+5 x^{2}+4} d x$
7. $\int \frac{x}{x^{4}+7 x^{2}+6} d x$
8. $\int \frac{x^{4}-x^{3}-x-1}{x^{3}-x^{2}} d x$
