Some Properties Of The Real Numbers

A real number is either a positive number, a negative number, or zero and may be classified as a:
a) rational - a number that can be expressed as a ratio of two integers. These include integers, positive and negative fractions, terminating decimals, and non-terminating repeating decimals. Examples: $-5,3,2 / 7,-4 / 5,2.45,-0.00561,0.6666 \ldots,-3.456456 \ldots$
b) irrational - any number that is not rational. Examples:

$$
\sqrt{17}=4.1231 \ldots, \quad \pi=3.14159 \ldots, \tan \frac{8 \pi}{9}=-0.364 \ldots
$$

Fundamental Properties of the Operations of Addition and Multiplication. $\{a, b$, and c are real numbers\}

1. Commutative Laws:	$\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$	$\mathrm{ab}=\mathrm{ba}$
2. Associative Laws	$a+(b+c)=(a+b)+c$	$\mathrm{a}(\mathrm{bc})=(\mathrm{ac}) \mathrm{b}$
3. Distributive Law	$a(b+c)=a b+a c$	
4. Identity Elements	$\mathrm{a}+0=\mathrm{a}$	$\mathrm{a} \times 1=\mathrm{a}$
5. Existence of Negatives	$a+(-a)=0$	
6. Existence of Reciprocals	every real number by $1 /$ a, such that $a \times 1 / a=$	reciprocal, denoted
7. Zero Product Property	$a b=0 \quad$ if and only if	or $b=0$

Inequalities

Definition:

a) The symbols < ("is less than") and > ("is greater than") are defined as follows:

1. $\mathrm{a}<\mathrm{b}$ if and only if $\mathrm{b}-\mathrm{a}$ is positive
2. $\mathrm{a}>\mathrm{b}$ if and only if $\mathrm{a}-\mathrm{b}$ is positive
b) The symbols \leq ("is less than or equal to") and \geq ("is greater than or equal to") are defined as follows:
$\begin{array}{ll}\text { 1. } \mathrm{a} \leq \mathrm{b} & \text { if and only if either } \mathrm{a}<\mathrm{b} \text { or } \mathrm{a}=\mathrm{b} \\ \text { 2. } \mathrm{a} \geq \mathrm{b} & \text { if and only if either } \mathrm{a}>\mathrm{b} \text { or } \mathrm{a}=\mathrm{b}\end{array}$

Properties:

1. If $\mathrm{a}<\mathrm{b}$ and $\mathrm{b}<\mathrm{c}$, then $\mathrm{a}<\mathrm{c}$
2. If $\mathrm{a}<\mathrm{b}$, then $\mathrm{a}+\mathrm{c}<\mathrm{b}+\mathrm{c}$, if " c " is any real number
3. If $\mathrm{a}<\mathrm{b}$ and $\mathrm{c}<\mathrm{d}$, then $\mathrm{a}+\mathrm{c}<\mathrm{b}+\mathrm{d}$
4. If $\mathrm{a}<\mathrm{b}$, and " c " is any positive number, then $\mathrm{ac}<\mathrm{bc}$
5. If $\mathrm{a}<\mathrm{b}$, and " c " is any negative number, then $\mathrm{ac}>\mathrm{bc}$
6. If $a>b$ and $b>c$, then $a>c$
7. If $a>b$, then $a+c>b+c$, if " c " is any real number
8. If $a>b$ and $c>d$, then $a+c>b+d$

9. If $a>b$, and " c " is any positive number, then $a c>b c$
10. If $a>b$, and " c " is any negative number, then $a c<b c$

Intervals

Definitions:
a) The bounded open interval from a to b, denoted by (a, b), is the set of real numbers x such that $\mathrm{a}<\mathrm{x}<\mathrm{b}$.

b) The bounded closed interval from a to b , denoted by [a, b], is the set of real numbers
x such that $a \leq x \leq b$

c) The bounded interval half-open on the left, denoted by (a, b], is the set of all real numbers x such that $a<x \leq b$

a
b
a
b
d) The bounded interval half-open on the right, denoted by $[a, b)$, is the set of all real numbers x such that

$$
a \leq x<b
$$

 a b

b

Infinity

Symbols: $\infty \rightarrow$ infinity
$+\infty$ or $\infty \rightarrow$ positive inf
$\rightarrow \infty$ negative infinity

$$
(-\infty,+\infty) \text { or }(-\infty, \infty)
$$

denotes the set of all real numbers

Unbounded Open Interval

$(a,+\infty)$ denotes: a) the set of all numbers greater than a
b) the set of all real numbers x such that $x>a$

Unbounded Closed Interval
$[a,+\infty)$ denotes a) the set of all numbers greater than or equal to a
b) the set of all real numbers x such that $x \geq a$

Unbounded Open Interval
$(-\infty$ b $)$ denotes: $a)$ the set of all numbers less than b
b) the set of all real numbers x such that $x<b$

Unbounded Closed Interval

$(-\infty, b]$ denotes: $a)$ the set of all numbers less than or equal to b

b) the set of all real numbers x such that $x \leq b$

Absolute Value

If a is a real number, then the absolute value of a is:

$$
\left\lvert\, d= \begin{cases}a, & \text { if } a \geq 0 \\ -a, & \text { if }\end{cases}\right.
$$

The absolute value of a number cannot be negative. The symbol -a does not necessarily mean that -a is negative.

Operations with absolute values: (let a and b be real numbers and n a positive integer)

$$
\begin{array}{ll}
\text { 1. }|a b|=|a||b| & \text { 2. }\left|\frac{a}{b}\right|=\frac{|a|}{|b|}, \quad b \neq 0 \\
\text { 3. }|a|=\sqrt{a^{2}} & \text { 4. }\left|a^{n}\right|=|a|^{n}
\end{array}
$$

Properties of inequalities and absolute values

(let a and b be real numbers and n a positive integer)

$$
\begin{array}{|ll|}
\hline \text { 1. } & -|a| \leq a \leq|a| \\
\text { 2. } & |a| \leq k \text { if and only if }-k \leq a \leq k \\
\text { 3. } & k \leq|a| \text { if and only if } k \leq a \text { or } a \leq-k \\
\text { 4. Triangle Inequality }|a+b| \leq|a|+|b| \\
\hline
\end{array}
$$

Properties 2 and 3 are also true if \leq is replaced by $<$

Distance and Midpoint of an Interval

Distance:

The distance between two points a and b on the real line is given by:

$$
d=|a-b|=|b-a|
$$

The directed distance from a to b is $(\mathrm{b}-\mathrm{a})$ and the directed distance from b to a is $(a-b)$
directed distance from a to b

(b-a)

Midpoint

The midpoint of an interval with endpoints a and b is the average of a and b .

$$
M=\frac{a+b}{2}
$$

Intercepts of a Graph

X-intercept - the value of x at the point where the graph cuts the x -axis.

To find the x-intercept, let y be zero and solve the equation for x

Example:

$$
\begin{aligned}
& y=x^{3}-4 x \\
& 0=x^{3}-4 x \\
& 0=x(x-2)(x+2) \text { Factor } \\
& x=0,2,-2 \quad \text { Lot } y \text { b }
\end{aligned}
$$

Y-intercept - the value of y at the point where the graph cuts the y-axis.

To find a y-intercept, let x be zero and solve the equation for y.

Example:
$y=x^{3}-4 x$
$\begin{array}{ll}y=0^{3}-4(0) & \text { Let } \mathrm{x} \text { be zero } \\ y=0 & \text { Solve for } \mathrm{y}\end{array}$

Symmetry of a Graph

1. A graph is symmetric with respect to the y -axis, if whenever (x, y) is a point on the graph, $(-x, y)$ is also a point on the graph. This means that the portion of the graph to the left of the y-axis is a mirror image of the portion to the right of the y-axis.

Test

The graph of an equation in x and y is symmetric with respect to the y -axis if replacing x by - x yields equivalent equation.

Example:

$$
\begin{array}{|ll|}
\hline y=2 x^{2}-3 & \text { original equation } \\
y=2(-x)^{2}-3 & \text { replace } x \text { by }-x \\
y=2 x^{2}-3 & \text { simplify } \\
y=2 x^{2}-3 & \text { equivalent equatio }
\end{array}
$$

2. A graph is symmetric with respect to the x-axis, if whenever (x, y) is a point on the graph, $(x,-y)$ is also a point on the graph. This means that the portion of the graph above the x -axis is a mirror image of the portion below the x -axis.

Test: The graph of an equation in x and y is symmetric with respect to the x -axis if replacing y by - y yields An equivalent equation.

Example

| $x=-2 y^{2}+3$ | original equation | |
| :--- | :--- | :--- | :--- |
| $x=-2(-y)^{2}+3$ replace y by | -y | |
| $x=-2 y^{2}+3$ | simplify | |
| $x=-2 y^{2}+3$ | equivalent equation | |

3. A graph is symmetric with respect to the origin, if whenever (x, y) is a point on the graph, $(-x,-y)$ is also a point on the graph. This means that the graph is unchanged by a rotation of 180 degrees about the origin.

Test: The graph of an equation in x and y is symmetric with respect to the origin if replacing x by $-x$ and y by $-y$ yields an equivalent equation.

Example | $y=3 x^{3}-2 x$ | original equation |
| :--- | :--- |
| $-y=3(-x)^{3}-2(-x)$ | replace x by $\quad-\mathrm{x}$ and y by -y |
| $-y=-3 x^{3}+2 x$ | simplify |
| $y=3 x^{3}-2 x$ | equivalent equation |

Basic Formulas

Pythagorean Theorem - states that in a right triangle the hypotenuse c and sides a and b are related by $c^{2}=a^{2}+b^{2}$ and conversely, if $c^{2}=a^{2}+b^{2}$ then the triangle is a right triangle.

Distance Formula - the distance between the points $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ in the plane is given by $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Midpoint Formula - the midpoint is found by averaging the x-coordinates of the two points and averaging the y-coordinates of the two points $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Example: Find ' x ' so that the distance between $(x, 3)$ and $(2,-1)$ is 5 and then calculate the midpoint of the line segment joining the two points. Determined points $(5,3)$ or $(-1,3)$

$$
\begin{array}{ll}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \text { distance formula } \\
5=\sqrt{(x-2)^{2}+[3-(-1)]^{2}} & \text { substitution } \\
25=\left(x^{2}-4 x+4\right)+16 & \text { square both sides } \\
0=x^{2}-4 x-5 & \\
0=(x-5)(x+1) & \text { factor } \\
x=5 \text { or }-1 & \text { solve }
\end{array}
$$

$$
\begin{array}{ll}
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & \text { formula } \\
M\left(\frac{5+2}{2}, \frac{3+(-1)}{2}\right) & \text { substitution } \\
M\left(\frac{7}{2}, \frac{2}{2}\right)=\left(\frac{7}{2}, 1\right) & \text { simplify }
\end{array}
$$

Slope: if $P_{1}\left(x_{1}, x_{2}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ are any two distinct points on the line l, which is not parallel to the y-axis, then the slope of l, denoted by m, is given by:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta x}{\Delta y} \text { where } \Delta \text { (delta) means " a change in" }
$$

The value of m computed from the formula is independent of the choice of the two points on on the given line.

The inclination of a line not parallel to the x -axis is the smallest angle measured counterclockwise from the positive direction of the x -axis to the line. The inclination of a line parallel to the x-axis is defined to be zero. If α denotes the inclination of a line, α may be any angle in the interval $0 \leq \alpha<\pi$

If α is the inclination of line l, not parallel to the y-axis, then the slope m of l is given by:

$m=\tan \alpha$

Two non-vertical lines are parallel if and only if their slopes are equal $m_{1}=m_{2}$ and they are perpendicular if and only if the product of their slopes is equal to -1 .
$m_{1} \cdot m_{2}=-1$ he slopes are considered negative reciprocals of one another.

