$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& \sin A=\frac{a}{c} \\
& \cos A=\frac{b}{c} \\
& \tan A=\frac{a}{b}
\end{aligned}
$$

Formulas From
Geometry

$h=a \sin x$
Area $=\frac{1}{2} b h$
Area $=\frac{1}{2} a b \sin x$
Area $=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$
Area $=\frac{1}{2} \frac{a^{2} \sin B \sin C}{\sin A}$
Law of Cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos C$
Law of Sines: $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

$$
\text { Area }=\pi r^{2}
$$

Circumference $=2 \pi r=\pi d$

$$
\begin{aligned}
& \text { Area }=\frac{\theta r^{2}}{2} \\
& s=r \theta
\end{aligned}
$$

Circular Ring

$$
\begin{aligned}
& \left(\mathrm{p}=\text { average radius } \rightarrow \frac{R+r}{2}\right. \\
& \mathrm{w}=\text { average width }) \\
& \text { Area }=\pi\left(R^{2}-r^{2}\right) \\
& \text { Area }=2 \pi p w
\end{aligned}
$$

Ellipse

Area $=\pi a b$
Circumference $\quad \approx 2 \pi \sqrt{\frac{a^{2}+b^{2}}{2}}$

Sector of a Circular Ring
($\mathrm{p}=$ average radius, $\mathrm{w}=$ average width, θ in radians)
Area $=\theta p w$

Frustum of Right Circular Cone

$$
\begin{aligned}
& \text { Volume }=\frac{\pi\left(r^{2}+r R+R^{2}\right) h}{3} \\
& \text { Lateral Surface Area }=\pi s(R+r)
\end{aligned}
$$

Wedge
($\mathrm{A}=$ area of upper face, B = area of base)
$A=B \sec \theta$

