## **Basic Differentiation**

$$f(x) = 6$$
1. 
$$f'(x) = 0$$

3. 
$$f(x) = x$$
$$f'(x) = 1$$

5. 
$$f(x) = x^9 \\ f'(x) = 9x^8$$

$$f(x) = x^{-8}$$
7. 
$$f'(x) = -8x^{-9} = -\frac{8}{x^9}$$

$$f(x) = x^{-\frac{7}{3}}$$
9. 
$$f'(x) = -\frac{7}{3}x^{-\frac{10}{3}} = -\frac{7}{3x^{\frac{10}{3}}}$$

11. 
$$f(x) = 5x^4$$
$$f'(x) = 5 \cdot 4x^3 = 20x^3$$

$$f(x) = \frac{6}{x^{7}} = 6x^{-7}$$
13. 
$$f'(x) = 6 \cdot -7x^{-8} = -\frac{42}{x^{8}}$$

15. 
$$f(x) = 7^{5x}$$
$$f'(x) = 7^{5x} \cdot \ln 7 \cdot 5$$

$$f(x) = 11^{\frac{x}{5}} = 11^{\frac{1}{5}x}$$
17. 
$$f'(x) = 11^{\frac{1}{5}x} \cdot \ln 11 \cdot \frac{1}{5}$$

19. 
$$f(x) = e^{-7x}$$
$$f'(x) = e^{-7x} \cdot -7$$

2. 
$$f(x) = -7$$
  
 $f'(x) = 0$ 

4. 
$$f(x) = x^3$$
  
 $f'(x) = 3x^2$ 

$$f(x) = x^{-3}$$

6. 
$$f'(x) = -3x^{-4} = -\frac{3}{x^4}$$

$$f(x) = x^{\frac{3}{5}}$$
8. 
$$f'(x) = \frac{3}{5}x^{-\frac{2}{5}} = \frac{3}{5x^{\frac{2}{5}}}$$

$$f(x) = \frac{1}{x^5} = x^{-5}$$
10. 
$$f'(x) = -5x^{-6} = -\frac{5}{x^6}$$

$$f(x) = 7x^{-5}$$
12. 
$$f'(x) = 7 \cdot -5x^{-6} = -\frac{35}{x^6}$$

$$f(x) = 4^{x}$$

$$14. \quad f'(x) = 4^{x} \cdot \ln 4$$

16. 
$$f(x) = 9^{-7x}$$
$$f'(x) = 9^{-7x} \cdot \ln 9 \cdot -7$$

18. 
$$f(x) = e^{3x}$$
$$f'(x) = e^{3x} \cdot 3$$

20. 
$$f(x) = e^{-5x}$$
$$f'(x) = e^{-5x} \cdot -5$$

21. 
$$f(x) = e^{3x^2}$$
$$f'(x) = e^{3x^2} \cdot 6x$$

22. 
$$f(x) = e^{x^4}$$
  
 $f'(x) = e^{x^4} \cdot 4x^3$ 

23. 
$$f(x) = 11^{3x^3}$$
$$f'(x) = 11^{3x^3} \cdot 9x^2$$

24. 
$$f'(x) = \frac{1}{2x} \cdot 2 = \frac{1}{x}$$

$$f(x) = \ln(4x)$$

$$f(x) = \ln(x^3)$$

25. 
$$f'(x) = \frac{1}{4x} \cdot 4 = \frac{1}{x}$$

26. 
$$f'(x) = \frac{1}{x^3} \cdot 3x^2 = \frac{3}{x}$$

$$f(x) = \ln(-7x^5)$$

$$f(x) = \log_7 x = \frac{\ln x}{\ln 7} = \frac{1}{\ln 7} \cdot \ln x$$
28.

27. 
$$f'(x) = \frac{1}{(-7x^5)} \cdot -7 \cdot 5x^4 = \frac{5}{x}$$

$$f'(x) = \frac{1}{\ln 7} \cdot \frac{1}{x} = \frac{1}{x \ln 7}$$

$$f(x) = \log_{11}(3x) = \frac{\ln(3x)}{\ln 11} = \frac{1}{\ln 11} \cdot \ln(3x)$$
29. 
$$f'(x) = \frac{1}{\ln 11} \cdot \frac{1}{3x} \cdot 3 = \frac{1}{x \ln 11}$$

$$f(x) = \log_2(4x^5) = \frac{\ln(4x^5)}{\ln 2} = \frac{1}{\ln 2} \cdot \ln(4x^5)$$

$$f'(x) = \frac{1}{\ln 2} \cdot \frac{1}{4x^5} \cdot 20x^4 = \frac{5}{x \ln 2}$$

31. 
$$f(x) = x^3 + 5x^2 - 7x + 2$$
$$f'(x) = 3x^2 + 10x - 7$$

$$f(x) = 6x^{-7} + 7^{2x}$$
32. 
$$f'(x) = 6 \cdot -7x^{-7} + 7^{2x} \cdot \ln 7 \cdot 2$$

$$f'(x) = -\frac{42}{x^7} + 7^{2x} \cdot \ln 7 \cdot 2$$

$$f(x) = \frac{3}{x^{13}} + 5x^3 - 5 + 3^{9x} = 3x^{-13} + 5x^3 - 5 + 3^{9x}$$

33. 
$$f'(x) = 3 \cdot -13x^{-14} + 5 \cdot 3x^2 + 3^{9x} \cdot \ln 3.9$$

$$f'(x) = -\frac{39}{x^{14}} + 15x^2 + 3^{9x} \cdot \ln 3.9$$

$$f(x) = \ln(5x^{2}) + \log_{9}(5x) = \ln(5x^{2}) + \frac{\ln(5x)}{\ln 9} = \ln(5x^{2}) + \frac{1}{\ln 9} \cdot \ln(5x)$$
34.
$$f'(x) = \frac{1}{5x^{2}} \cdot 10x + \frac{1}{\ln 9} \cdot \frac{1}{5x} \cdot 5 = \frac{2}{x} + \frac{1}{x \ln 9}$$

$$f(x) = \log_8(3x^3 - 6x + 1) = \frac{\ln(3x^3 - 6x + 1)}{\ln 8} = \frac{1}{\ln 8} \cdot \ln(3x^3 - 6x + 1)$$
35.
$$f'(x) = \frac{1}{\ln 8} \cdot \frac{1}{(3x^3 - 6x + 1)} \cdot (9x^2 - 6)$$

36. 
$$f(x) = 6^{(3x^2 - 7x + 1)}$$
$$f'(x) = 6^{(3x^2 - 7x + 1)} \cdot \ln 6 \cdot (6x - 7)$$

$$f(x) = e^{\ln(5x-3)}$$

37. 
$$f'(x) = e^{\ln(5x-3)} \cdot \frac{1}{5x-3} \cdot 5$$

$$f(x) = \ln(5^{3x^3 + 7x - e^{2x}})$$

38. 
$$f'(x) = \frac{1}{(5^{3x^3 + 7x - e^{2x}})} \cdot (5^{3x^3 + 7x - e^{2x}}) \cdot \ln 5 \cdot (9x^2 + 7 - e^{2x} \cdot 2) =$$
$$f'(x) = \ln 5 \cdot (9x^2 + 7 - e^{2x} \cdot 2)$$