Higher Order Differentiation and Implicit Differentiation

1. Find the 1st and 2nd order derivatives for:

a)
$$f(x) = 5x^4 + 2x^3 - 7x$$

b) $f(x) = \cos^3(5x)$

b) $f(x) = e^{2x} \ln x$

- 2. If a particle is projected vertically upward from ground level with an initial velocity v_o , its height after t seconds is $s(t) = v_o t 16t^2$ meters. Suppose $v_o = 800$ meters per second.
 - a) What is the velocity of the particle at time t?
 - b) At what time does the particle reach its maximum height?
 - c) What is the maximum height?
 - d) How long does it take for the object to strike the ground?

- e) At what time(s) is the object at a height of 9216 feet?
- f) What is the velocity of the object when it is at a height of 9216 feet?
- g) Is the acceleration of the object constant?
- 3. Using implicit differentiation

a) $x^3 + x^2y + xy^2 + y^3 = 0$ (with respect to x) b) $x \sin y = y \cos x$ (with respect to x)

c) $3x^4 - 4x^3 = 12$ find the second order derivative with respect to x

4. Determine the equation of the tangent line to the curve $x^2 + 4y^3 = -28$ when y = -2