HIGHER ORDER DERIVATIVES

1. Find the first and second order derivatives of the given function.
a) $f(x)=x^{4}-2 x^{3}+4 x^{2}-6$
b) $f(x)=x^{10}+4 x^{7}-2 x^{3}+2 x$
c) $f(x)=\sqrt{x^{2}+1}$
d) $\mathrm{f}(\mathrm{x})=\sqrt[3]{x}+\sqrt{x}$
e) $f(x)=(3 x+2)^{3}$
f) $f(x)=\ln (3 x+4)^{3}$
g) $f(x)=e^{(5 x+3)}$
h) $f(x)=(4 x+1)^{3 / 4}$
2. Find the third derivative of the given function.
a) $f(x)=\sqrt{5 x-1}$
b) $f(x)=\frac{1-x}{1+x}$
c) $\mathrm{f}(\mathrm{x})=\underline{5}$

$$
\left(\overline{1+} x^{2}\right)
$$

3. If $f(x)=(2-3 x)^{(-1 / 2)}$, find $f(0), f^{\prime}(0), f^{\prime \prime}(0)$, and $f^{\prime \prime \prime}(0)$
4. If $f(x)=\left(2-t^{2}\right)^{6}$, find $f(0), f(0), f^{\prime \prime}(0)$, and $f^{\prime \prime \prime}(0)$
5. Find a second-degree polynomial " f " such that $f(2)=5, f(2)=3$, and $f^{\prime \prime \prime}(2)=2$
6. Find a third-degree polynomial " $f^{\prime \prime}$ such that $f(1)=1, f(1)=3$, $f^{\prime}(1)=6$, and $f^{\prime \prime \prime}(1)=12$.
7. Note: the first derivative represents the velocity of an object as a function of time.
: the second derivative represents the instantaneous rate of change of velocity with respect to time (acceleration)

Each equation represents the motion of a given particle with distance in meters and time in seconds. Find (a) the velocity and acceleration as a function of time, b) the acceleration after 1 sec , and c) the acceleration at the instants when the velocity is 0 .
a) $s=t^{3}-3 t$
b) $s=t^{2}-t+1$
c) $s=2 t^{3}-7 t^{2}+4 t+1$

