Higher Order, Implicit Derivatives and Curve Sketching Answer key
A. Higher order derivatives: Determine the $1^{\text {st }}$ and $2^{\text {nd }}$ order derivatives for each of the following:

1. $f(x)=5 x^{3}-3 x^{5}$
$f^{\prime}(x)=15 x^{2}-15 x^{4} \Rightarrow 15 x^{2}\left(1-x^{2}\right)$
$f^{\prime \prime}(x)=30 x-60 x^{3} \Rightarrow 30 x\left(1-2 x^{2}\right)$
2. $f(x)=\frac{x^{3}+7}{x}$
$f(x)=\frac{x^{3}+7}{x} \Rightarrow \frac{x^{3}}{x}+\frac{7}{x} \Rightarrow x^{2}+7 x^{-1}$
$f^{\prime}(x)=2 x+(-1) 7 x^{-2} \Rightarrow 2 x-7 x^{-2}$
$f^{\prime \prime}(x)=2-(-2) 7 x^{-3} \Rightarrow 2+14 x^{-3} \Rightarrow \frac{2 x^{3}+14}{x^{3}} \Rightarrow \frac{2\left(x^{3}+7\right)}{x^{3}}$
or
$f(x)=\frac{x^{3}+7}{x} \Rightarrow\left(x^{3}+7\right) x^{-1}$
$f^{\prime}(x)=3 x^{2} \cdot x^{-1}+(-1) x^{-2}\left(x^{3}+7\right) \Rightarrow 3 x-x^{-2}\left(x^{3}+7\right)$
$f^{\prime}(x)=3-\left[(-2) x^{-3}\left(x^{3}+7\right)+3 x^{2} \cdot x^{-2}\right] \Rightarrow 3+2 x^{-3}\left(x^{3}+7\right)-3 \Rightarrow \frac{2}{x^{3}}\left(x^{3}+7\right) \Rightarrow \frac{2\left(x^{3}+7\right)}{x^{3}}$
3. $f(x)=\sin \left(x^{2}\right)$
$f^{\prime}(x)=\cos \left(x^{2}\right) \cdot 2 x$
$f^{\prime \prime}(x)=\left[-\sin \left(x^{2}\right) \cdot 2 x\right] \cdot 2 x+2 \cos \left(x^{2}\right) \Rightarrow 2\left(-2 x^{2} \sin \left(x^{2}\right)+\cos \left(x^{2}\right)\right)$

B. Application:

A dynamite blast blows a heavy rock straight up with a launch velocity of $160 \mathrm{ft} / \mathrm{sec}$. It reaches a height of $s(t)=160 t-16 t^{2}$ feet after t sec.
a) How high does the rock go?

The instant that the rock reaches its highest point its velocity is zero. To find the max. height, determine the first derivative, equate to zero and find the times when the velocity is zero. Using this info to find $\mathrm{s}(\mathrm{t})$ - the rock' s height.
velocity $\Rightarrow s^{\prime}(t)=160-32 t$
time $\Rightarrow 160-32 t=0 \Rightarrow t=5 \mathrm{sec}$
rock' s height $\Rightarrow s(5)=160(5)-16\left(5^{2}\right) \Rightarrow s(5)=800-400=400$ feet
b) What are the velocity and the speed of the rock when it is 256 feet above the ground on the way up? On the way down?

To find the rock' s velocity at 256 feet on the way up and down, determine
the two values of t such that $s(t)=160 t-16 t^{2}=256$
times $\Rightarrow-16 t^{2}+160 t-256=0 \Rightarrow-16(t-2)(t-8)=0 \Rightarrow t=2 \mathrm{sec}$ and 8 sec
using the info from part a)
$v(2)=s^{\prime}(2)=160-32(2)=160-64=96 \mathrm{ft} / \mathrm{sec}$
$v(8)=s^{\prime}(8)=160-32(8)=160-256=-96 \mathrm{ft} / \mathrm{sec}$
c) What is the acceleration of the rock at any time t during its flight (after the blast)?

At any time during its flight following explosion, the rock's acceleration is a constant
acceleration $\Rightarrow s^{\prime \prime}(t)=-32 f t / \mathrm{sec}$
it slows down, as it falls, it speeds up
d) When does the rock hit the ground?

The rock hits the ground at the positive time t for which $s=0$. The equation $160 t-16 t^{2}=0 \Rightarrow$ $-16 t(10-t)=0 \Rightarrow t=0$ and $t=10$. At $\mathrm{t}=0$,
returned to the ground 10 sec later.
C. Implicit Differentiation

1. $x^{2} y+x y^{2}=6$ with respect to x
$\left(2 x \cdot y+1 \cdot \frac{d y}{d x} \cdot x^{2}\right)+\left(1 \cdot y^{2}+2 y \frac{d y}{d x} \cdot x\right)=0 \Rightarrow \frac{d y}{d x}\left(x^{2}+2 x y\right)=-2 x y-y^{2} \Rightarrow \frac{d y}{d x}=\frac{-2 x y-y^{2}}{x^{2}+2 x y}$
2. $y^{2}=x^{2}+\sin x y$ with respect to x
$2 y \frac{d y}{d x}=2 x+\cos (x y)\left(1 \cdot y+x \cdot \frac{d y}{d x}\right) \Rightarrow 2 y \frac{d y}{d x}=2 x+y \cos (x y)+x \cos (x y) \frac{d y}{d x} \Rightarrow$
$\frac{d y}{d x}(2 y-x \cos (x y))=2 x+y \cos (x y) \Rightarrow \frac{d y}{d x}=\frac{2 x+y \cos (x y)}{2 y-x \cos (x y)}$
3. $2 x y+y^{2}=x+y$ with respect to y
$\left(2 \frac{d x}{d y} \cdot y+2 x\right)+2 y=1 \cdot \frac{d x}{d y}+1 \Rightarrow 2 y \frac{d x}{d y}-\frac{d x}{d y}=-2 y-2 x+1 \Rightarrow \frac{d x}{d y}(2 y-1)=-2 y-2 x+1 \Rightarrow$
$\frac{d x}{d y}=\frac{-2 y-2 x+1}{2 y-1}$
4. $2 x^{3}-3 y^{2}=8$ - find the $2^{\text {nd }}$ derivative with respect to x
$6 x^{2}-6 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{-6 x^{2}}{-6 y}=\frac{x^{2}}{y}=x^{2} y^{-1}$ first derivative
2nd derivative
$\frac{d^{2} y}{d x^{2}}=2 x y^{-1}+(-1) y^{-2} \frac{d y}{d x} \cdot x^{2} \Rightarrow x y^{-2}\left(2 y-x \frac{d y}{d x}\right) \Rightarrow x y^{-2}\left(2 y-x x^{2} y^{-1}\right) \Rightarrow$
$x y^{-3}\left(2 y^{2}-x^{3}\right) \Rightarrow \frac{x}{y^{3}}\left(2 y^{2}-x^{3}\right)$ or $\frac{2 x}{y}-\frac{x^{4}}{y^{3}}$

Determine the equation of the line through the point $(2,3)$ tangent to the curve defined by the equation $x^{2}+x y-y^{2}=1$
To find the slope, we need $d y / d x$
$x^{2}+x y-y^{2}=1$
$2 x+\left(1 \cdot y+1 \cdot \frac{d y}{d x} \cdot x\right)-2 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}(x-2 y)=-2 x-y \Rightarrow \frac{d y}{d x}=\frac{-2 x-y}{x-2 y}$
$m=\frac{d y}{d x}=\frac{-2 x-y}{x-2 y}=\frac{-2(2)-3}{2-2(3)}=\frac{-4-3}{2-6}=\frac{7}{4}$
equation $\Rightarrow\left(y_{2}-y_{1}\right)=m\left(x_{2}-x_{1}\right) \Rightarrow(y-3)=\frac{7}{4}(x-2) \Rightarrow 4 y=7 x-2$

E. Curve Sketching

Sketch the curve $f(x)=4 x^{2}\left(1-x^{2}\right)$
a) x -intercepts $\Rightarrow 4 x^{2}\left(1-x^{2}\right)=0 \Rightarrow x=0, x=1, x=-1$
b) y -intercepts $\Rightarrow y=4(0)^{2}\left(1-0^{2}\right)=0$
c) max $/ \min$ and where graph is increasing/decreasing
$f^{\prime}(x)=8 x\left(1-x^{2}\right)+4 x^{2}(-2 x) \Rightarrow 8 x-16 x^{3} \Rightarrow 8 x\left(1-2 x^{2}\right)$
critical numbers $x=0, x=+\sqrt{2} / 2, x=-\sqrt{2} / 2$
maximum and minimums found by substituting into original equation
$f(x)=4(0)^{2}\left(1-0^{2}\right)=0, f(x)=4(\sqrt{2} / 2)^{2}\left(1-(\sqrt{2} / 2)^{2}\right)=1, f(x)=4(-\sqrt{2} / 2)^{2}\left(1-(-\sqrt{2} / 2)^{2}\right)=1$
\max / \min points $(0,0),(\sqrt{2} / 2,1),(-\sqrt{2} / 2,1)$
Regions where graph increasing/decreasing
Interval $\quad(-\infty,-\sqrt{2} / 2)(-\sqrt{2} / 2,0)(0, \sqrt{2} / 2)(\sqrt{2} / 2, \infty)$
Value
Result

-2
$1 / 2$
1

Sign
Interpret
increasing decreasing increasing decreasing
d) points of inflection and regions of concavity
$f^{\prime \prime}(x)=8\left(1-2 x^{2}\right)+(-4 x) \cdot(8 x)=8\left(1-6 x^{2}\right)$
Critical numbers $\Rightarrow x=-\sqrt{6} / 6, x=\sqrt{6} / 6$
Point of inflection calculated by substituting into original equation
$f(x)=4(-\sqrt{6} / 6)^{2}\left(1-(-\sqrt{6} / 6)^{2}\right)=5 / 9, f(x)=4(\sqrt{6} / 6)^{2}\left(1-(\sqrt{6} / 6)^{2}\right)=5 / 9$
Points of inflection $(-\sqrt{6} / 6,5 / 9),(\sqrt{6} / 6,5 / 9)$
Regions of Concavity
Interval $\quad(-\infty,-\sqrt{6} / 6)(-\sqrt{6} / 6, \sqrt{6} / 6)(\sqrt{6} / 6, \infty)$

Test Value
Result -1

Sign
Interpret
concave down concave up concave down

