Applications of First and Second Derivatives:

1. For each of the following determine
a) Critical values of x
b) open intervals where the graph is increasing and decreasing
c) location of all relative extrema (maximum and minimum points)
1) $f(x)=-2 x^{2}+4 x+3$
2) $f(x)=\frac{x^{5}-5 x}{5}$
3) $f(x)=(x-1)^{2}(x+2)$
4) $f(x)=x^{\frac{2}{3}}(x-5)$
2. The concentration " C " of a certain chemical in the blood stream " t " hours after injection into muscle tissue is given by: $C=\frac{3 t}{27+t^{3}}$. When is the concentration greatest?
3. The profit "P" (in dollars) made by a fast food restaurant selling "x" hamburgers is $P=2.44 x-\frac{x^{2}}{20,000}-5000,0 \leq x \leq 35,000$. Find the open intervals on which "P" is increasing or decreasing.
4. After birth, an infant normally will lose weight for a few days and then start gaining. A model for the average weight " W " (in pounds) of infants over the first two weeks following birth is: $W=0.033 t^{2}-0.3974 t+7.3032,0 \leq t \leq 14$ where " t " is measured in days. Find the open intervals on which "W" is increasing or decreasing.
5. Find the points of inflection of each of the following functions:
a) $f(x)=2 x^{3}-6 x^{2}+12 x-8$
b) $f(x)=x(x-4)^{3}$
c) $f(x)=x \sqrt{x+3}$
6. The deflection " D " of a particular bean of length " L " is $D=2 x^{4}-5 L x^{3}+3 L^{2} x^{2}$ where " x " is the distance from one end of the beam. Find the value of " x ' that yields the maximum deflection.
7. A manufacturer has determined that the total cost " C " of operating a factory is $C=0.5 x^{2}+15 x+5000$ where "x" is the number of units produced. At what level of production will the average cost per unit be minimum.
